Коллекторы нефти и газа

Коллекторами нефти и газа называются породы, слагающие природные резервуары, способные вмещать подвижные вещества (воду, нефть, газ) и отдавать их в естественном источнике или в горной породе при разработке в данной термобарической и геохимической обстановках. В качестве коллекторов могут выступать все известные разновидности горных пород (в одном из месторождений Восточной Туркмении даже в толще соли содержится небольшое скопление газа).

Различают гранулярные (межзерновые), трещинные, кавернозные и биопустотные коллекторы. Часто встречаются промежуточные разности, особенно трещинно-кавернозные и гранулярно-трещинные.

Гранулярными являются в основном песчано-алевритовые породы и некоторые разности карбонатных – оолитовые, обломочные известняки, а также остаточные породы (дресва выветривания). Пустоты коллекторов представлены порами.

Трещинными коллекторами могут быть осадочные породы, изверженные и метаморфические. Трещины определяют, главным образом, проницаемость этих образований.

В качестве трещинных коллекторов среди осадочных пород чаще всего выступают карбонатные, но бывают и песчано-алевритовые и даже глинистые, которые ранее могли являться нефтегазопроизводящими. Кавернозные коллекторы чаще всего связаны с зонами выщелачивания с образованием пустот (каверн, пещер) в карбонатных и эвапоритовых толщах. В качестве основного процесса, образующего пустоты, чаще всего выступает карстообразование.

Биопустотные коллекторы связаны с органогенными карбонатными породами, пустоты носят внутрискелетный и межскелетный характер. Характеризуя породу-коллектор, необходимо, прежде всего, учитывать ее емкость, т. е. способность вмещать в себя определенный объем нефти и газа, и способность отдавать – пропускать через себя нефть и газ. Первое свойство контролируется пористостью пород, а второе – ее проницаемостью.

Пористость горных пород

Суммарный объем всех пустот в породе, включая поры, каверны, трещины, называют общей или абсолютной (теоретической) пористостью. Общая пористость измеряется коэффициентом пористости, представляющим собой отношение всего объема пор к объему породы в долях единицы или процентах. Часть пор в породе оказывается не связанной между собой. Такие изолированные поры не охватываются потоком флюида при разработке. Кроме того, изолированные поры могут быть заполнены водой или газом. Поэтому выделяют открытую пористость – отношение объема открытых пор к объему породы.

Открытая пористость всегда меньше теоретической. Некоторые каналы исключаются из процесса движения флюида и оказываются неэффективными ввиду их малого диаметра, величины смачиваемости стенок канала и т. д. Отношение объема эффективных пор к объему породы называется эффективной пористостью, которая выражается в долях единицы или процентах. Эффективная пористость всегда должна определяться по отношению к конкретному флюиду и к пластовым условиям. Ее определение возможно методами ГИС или специальными промысловыми исследованиями. Иногда используется понятие приведенной пористости, представляющей отношение объема пор к общему объему матрицы породы.

В природных условиях пористость песчано-алевритового коллектора зависит прежде всего от характера укладки зерен, от степени их отсортированности, окатанности, наличия, состава и качества цемента. Кроме того, пористость зависит от проявления и сохранения разного размера каверн и трещиноватости вследствие вторичных процессов − выщелачивания, перекристаллизации, доломитизации и др. Большое влияние на геометрию порового пространства оказывают структура и текстура пород-коллекторов. Под структурой пород понимаются внешние особенности зерен породы: их форма, характер поверхности зерен и т. д.; под текстурой − характер взаимного расположения зерен породы и их ориентация. В частности, слоистость является одним из важнейших и широко распространенных признаков текстуры.

Существенное влияние на взаимодействие пород-коллекторов с флюидом оказывает величина поверхности пор. В обломочных породах общая поверхность пор находится в обратной зависимости от размера частиц и характеризуется величиной удельной поверхности:

где f – коэффициент пористости; D – средний диаметр зерен, см.

Плотность осадочных горных пород определяется в пределах от 1,5 до 2,6 г/см3 и для обломочных образований находится в обратной зависимости от пористости.

Карбонатные породы, как уже отмечалось, часто являются коллекторами. Первичная пористость характерна для биогенных пород, обломочных известняков, онколитовых, сферолитово-сгустковых и оолитовых их разностей. Она существенно изменяется уже в диагенезе − когда происходит выщелачивание, перекристаллизация и доломитизация. Первый их этих процессов имеет определяющее значение для карстообразования. Карстообразование может начаться еще в зонах повышенной трещиноватости пород. Кавернозные известняки являются наиболее емкими коллекторами. К сожалению, часто образовавшиеся каверны заполняются кальцитом позднейшей генерации и другими новообразованиями. Процессы доломитизации могут увеличить емкость коллектора до 12%, а процессы сульфатизации и окремнения существенно ее снизить. В массивных известняках и доломитах основная емкость коллектора формируется, как правило, благодаря трещиноватости, достигая 2 − 3%.

Наиболее распространенным методом определения пористости является объемный метод, основанный на точной фиксации объема заполняющей поры жидкости.

Проницаемость горных пород. Под проницаемостью понимается способность пород пропускать через себя флюиды. Опытным путем было определено (Дарси), что скорость установившейся фильтрации пропорциональна перепаду давления:

V = Кп 1/м2,

где V – скорость фильтрации, м/с; m – динамическая вязкость, Па с; Δр – перепад давления на отрезке А1, Па/м; Кп – коэффициент проницаемости, м2. Величина проницаемости выражается через коэффициент проницаемости Кп, м2. Определение проницаемости горных пород, наряду с указанным характером размерности (Кп, м2), может выполняться также в Д (Дарси) и мД; при этом для перевода используется соотношение: 1Д = 10-15 м2.

Проницаемость зависит от размера пор, их взаимосообщаемости и конфигурации, размера зерен, плотности их укладки и взаимного расположения, отсортированности, цементации и трещиноватости. Величина коэффициента проницаемости не зависит от природы фильтрующейся жидкости через образец пористой среды и от времени фильтрации. Однако в процессе эксперимента наблюдаются и некоторые отклонения. Так, при фильтрации жидкостей в рыхлых коллекторах и наличии весьма мелких фракций песка возможна перегруппировка зерен породы (суффозия) и забивание поровых каналов мелкими частицами, изменяющими проницаемость среды. Частицы, находящиеся в нефти во взвешенном состоянии, при выпадении вызывают частичное закупоривание пор, снижая проницаемость.

В результате выделения смолистых веществ, содержащихся в сырой нефти, происходит отложение их на поверхности зерен породы-коллектора, что приводит к уменьшению поперечного сечения поровых каналов. При фильтрации воды в коллекторах, содержащих небольшой процент глинистого материала в составе песчаника, глины разбухают, что вызывает уменьшение сечения поровых каналов. При воздействии пластовых вод, особенно агрессивных, на кремнезем возможно образование коллоидального кремнезема в поровых каналах – это также ведет к их закупориванию. Из глинистых минералов, по данным Т. Т. Клубовой (1984), максимально снижают проницаемость пород минералы монтмориллонитовой группы. Примесь 2% монтмориллонита к крупнозернистому кварцевому песчанику снижает его проницаемость в 10 раз, а 5% монтмориллонита − в 30 раз. Этот же песчаник с примесью каолинита до 15% все еще сохраняет хорошую проницаемость (соответственно 150 и 100-110 мД).

Вопрос о связи между собой двух основных параметров коллекторов – пористости и проницаемости пор – достаточно сложен. Проницаемость наиболее тесно связана с размерами пор и их конфигурацией, в то время как общая пористость по существу не зависит от размера пор. Если в поровых коллекторах проницаемость пропорциональна квадрату диаметра пор, то в трещинных коллекторах она пропорциональна кубу раскрытости трещин. Проницаемость и пористость в зоне разрывных дислокаций зависят от условий и степени заполнения их при перекристаллизации и вторичной цементации.

Подавляющая часть коллекторов представлена породами осадочного происхождения, но встречаются среди них и другие типы. Так, например, на Шаимском месторождении в Западной Сибири нефть залегает в выветрелых гранитах эрезионного выступа фундамента. В месторождении Литтон-Спрингс в Техасе нефть залегает на контакте серпентинитов и вмещающих их известняков (рис. 22).

На Кубе нефть получают из серпентинитов. В месторождении Фибро в Мексике часть подземного резервуара образована изверженными породами основного состава. В Японии некоторые залежи газа связаны с туфами и лавами. Залегает нефть и в коре выветривания фундамента, сложенного изверженными и метаморфическими породами.

По данным, полученным в результате изучения свыше 300 крупнейших месторождений в мире, запасы нефти распределяются в коллекторах следующим образом: в песках и песчаниках – 57%; в известняках и доломитах – 42%; в трещиноватых глинистых сланцах, выветрелых метаморфических и изверженных породах – 1%.

Наибольшее количество залежей в разрезе осадочного чехла территории СССР приурочено к основным продуктивным пластам терригенного состава (меловые отложения Западной Сибири, карбон и девон Русской плиты). Из литолого-фациальных разновидностей среди терригенных пород в качестве нефтегазоносных наиболее часто встречаются нормальные морские мелкозернистые песчаники и алевролиты. Реже всего нефтегазоносность связана с конгломератами и породами частого флишевого переслаивания.

С карбонатными коллекторами в настоящее время связано меньше разведанных запасов нефти и газа, чем с терригенными. Отчасти это может быть объяснено недостаточной разведанностью карбонатных пород. Широкое развитие карбонатных коллекторов предполагается в пределах Восточно-Сибирской платформы.

Как следует из сказанного выше, глинистые толщи имеют весьма широкое распространение. Глины выполняют роль вмещающей среды или локальных покрышек, роль коллекторов − заключенные в них прослои или линзы песков, песчаников, карбонатных пород. Однако еще в начале XX столетия были получены притоки нефти и газа и непосредственно из глин в Калифорнии (США), затем в других районах мира и, наконец, из битуминозных глин баженовской свиты Западной Сибири. Как правило, глины, выполняющие роль коллектора, подверглись существенным изменениям в процессе литогенеза (в основном различных уровней эпигенеза), что идентифицируется нами с процессами катагенеза органического вещества.

Эти глинистые породы по существу занимают промежуточное положение между собственно глинами и глинистыми сланцами. По мнению Т. Т. Клубовой (1984), они преимущественно гидрослюдистые, содержат значительное количество рассеянного ОВ, окремнелые. Наличие жесткого каркаса из кремнекислоты и сорбированного глинистыми минералами ОВ, гидрофобизировавшего поверхность монтмориллонитов из частиц глинистых минералов, а значит и зоны контакта их друг с другом и с другими микрокомпонентами пород, обусловливают их промышленную емкость. Именно гидрофобизация зон контактов предопределила их достаточно легкое разъединение, а впоследствии и отдачу той нефти, которая в них заключалась (Т. Т. Клубова, 1984). Формированию емкостного пространства способствует также тектоническая активность.

Пористость коллекторов обусловлена наличием пор различного размера или трещин. Выделяются макропоры (>1 мм). Среди последних различают сверхкапиллярные размером от 1 до 0,5 мм, капиллярные – от 0,5 до 0,0002 мм и субкапиллярные поры размером <0,0002 мм. Породы, обладающие субкапиллярными порами, для нефти практически непроницаемы; к ним, в частности, относятся глины.

Изучение терригенных коллекторов, выполненное Г. Н. Перозио, Б. К. Прошляковым, П. А. Карповым, Е. Е. Карнюшиной, Р. Н. Петровой, И. М. Горбанец и др. показало тесную корреляционную зависимость между типом коллекторов и величиной открытой пористости, с одной стороны, и уровнем катагенетического преобразования их с глубиной, с другой. Определяющими при этом являются процессы уплотнения пород-коллекторов и трещиннообразование. Данные Б. К. Прошлякова по Прикаспийской впадине показывают, что соответствующее уплотнение и активное трещиннообразование происходит на глубине 3,5-4,0 км, а образующаяся при этом трещинная пористость составляет около половины всего объема пор, а трещинная проницаемость измеряется тысячами миллидарси. Наглядное представление о типах коллекторов в терригенных породах и влиянии катагенеза в процессе погружения их дает сводная таблица, составленная Е. Е. Карнюшиной (табл. 2).

Для сравнения, по данным И. М. Горбанец (1977), трещиннообразование в кварцевых и глауконито-кварцевых алевролитах верхнего эоцена Западно-Кубанского прогиба Скифской эпигерцинской плиты начинается с глубины около 4,0 км. В интервале разреза от 0,6 до 5,0 км выделяются следующие зоны распределения различных типов коллекторов: I тип (до 3,5 км) − поровые; II (3,5-4,5 км) − преобладание трещинно-поровых при наличии всех остальных типов; III (глубже 4,5 км) − трещинные.

Существует основная классификация пор, каналов и других пустот по размерам на основе различия основных сил, вызывающих движение флюидов. М. К. Калинко составил общую классификационную таблицу всех видов пустот в зависимости от их морфологии и размеров (табл. 3; пределы отклонения размеров указаны в каждом конкретном случае).

А. А. Ханин применяет иную, чем М. К. Калинко, градацию пор по размерам, выделяя макропоры крупнее 1 мм и микропоры меньшие, чем эта величина. Комплексное использование основных отмеченных выше параметров пород-коллекторов позволило предложить на базе рекомендаций А. А. Ханина и др. в качестве практической (промышленной) следующую классификацию коллекторов, различающихся по величине пористости и проницаемости. К коллекторам первого класса относятся коллекторы с эффективной пористостью свыше 26% и проницаемостью – свыше 1000 мД; второго класса – коллекторы с эффективной пористостью от 18 до 26% и проницаемостью – от 500 до 1000 мД; третьего − от 12 до 18% и проницаемостью – от 500 до 100 мД; четвертого − от 8 до 12% и от 100 до 10 мД; пятого класса − от 4,5 до 8% и от 10 до 1 мД. Породы-коллекторы, имеющие эффективную пористость менее 4,5% и проницаемость ниже 1 мД, промышленного значения не имеют, образуя коллекторы шестого класса. Наиболее полные классификации карбонатных коллекторов разработаны Е. М. Смеховым и др. (1962) и М. К. Калинко (1957). Обычно карбонатные коллекторы разделяются на три большие группы: межзерновые, межагрегатные и смешанные. Группа межзерновых коллекторов включает несколько типов в зависимости от состава вещества, заполняющего межзерновые пространства, и степени заполнения, а межагрегатных − две подгруппы: порово-каверновые и трещинные коллекторы; пористость последних не превышает, как правило, 1,7−2%.

Добавить комментарий